

California Advanced Reciprocating Internal Combustion Engines Collaborative

Terry Surles
Deputy Director
Technology Systems Division

California Advanced Reciprocating Internal Combustion Engines Collaborative Employment Development Department Auditorium July 10, 2001

California has Established a \$62M/yr 7 Public Interest Energy Research Program (PIER)

California's Energy Future

Economy: Affordable

Solutions

Quality:

Reliable and

Available

Environment:

Protect and

Enhance

Vision Statement

The future electrical system of California will provide a clean, abundant and affordable supply tailored to the needs of "smart", efficient customers and will be the best in the nation.

Tailored, clean, abundant, affordable supply

Smart, efficient customers

Funded Program Areas

(in millions through March 2001)

Supply	\$74
Renewables, EPAG	
Demand	\$48
Buildings, Ind/Ag/Water	
	\$47
Strategic, Environmental	

CALIFORNIA ENERGY COMMISSION

Attributes for Addressing State Issues

Program Integration

Balanced

Technology

Portfolio

- -Temporal
- -Technology
- -Risk

Technology

Partnerships

- Universities
- Industry
- Federal

Focus on

California

- Specific to

State needs

Technology Partnerships are Critical for Overall Success of the Program

- Collaborative Funding
 - USDOE
 - EPRI
 - Industry
- Collaborative Management
 - UC Institutions
 - EPRI
- Other Partnerships
 - Other CEC initiatives, Cal/EPA, USEA, other federal agencies
 - ASERTTI, other states, national labs

Reciprocating Internal Combustion Engines

- Mature technology used for standby emergency power
- ◆ 3000 MW capacity for 300⁺ kW systems
- Major problem: Poor atmospheric emissions

Goal: Can we develop substantively cleaner systems to add to our portfolio of modular energy technologies